Computational workflows describe the complex multi-step methods that are used for data collection, data preparation, analytics, predictive modelling, and simulation that lead to new data products.

They can inherently contribute to the FAIR data principles: by processing data according to established metadata; by creating metadata themselves during the processing of data; and by tracking and recording data provenance. These properties aid data quality assessment and contribute to secondary data usage. Moreover, workflows are digital objects in their own right.

This paper argues that FAIR principles for workflows need to address their specific nature in terms of their composition of executable software steps, their provenance, and their development.

[maxbutton id=”4″ url=”https://doi.org/10.1162/dint_a_00033″ text=”Read more” linktitle=”Data Intelligence: FAIR Computational Workflows” ]

Citation

Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel Garijo, Yolanda Gil, Michael R. Crusoe, Kristian Peters, Daniel Schober (2022):
FAIR Computational Workflows.
Data Intelligence 2(1-2):0
https://doi.org/10.1162/dint_a_00033

About the author

Stian works in School of Computer Science, at the University of Manchester in Carole Goble‘s eScience Lab as a technical software architect and researcher. In addition to BioExcel, Stian’s involvements include Open PHACTS (pharmacological data warehouse), Common Workflow Language (CWL), Apache Taverna (scientific workflow system), Linked Data and identifiers, research objects (open science) and digital preservation, myExperiment (sharing scientific workflows), provenance (where did things come from and who did it) and annotations (who said what). orcid.org/0000-0001-9842-9718