
bioexcel.eu	

Partners	 Funding	

Performance Tuning and Optimization of GROMACS

Presenter: Mark Abraham
Host: Rossen Apostolov

BioExcel Educational Webinar Series

11 May, 2016

bioexcel.eu	

This	webinar	is	being	recorded	

bioexcel.eu	

Objectives of BioExcel
Excellence in Biomolecular Software
Improve the performance, efficiency and scalability of key codes

•  GROMACS (Molecular Dynamics Simulations)

•  HADDOCK (Integrative modeling of macro-assemblies)

•  CPMD (hybrid QM/MM code for enzymatic reactions,
photochemistry and electron transfer processes)

bioexcel.eu	

Objectives of BioExcel
Excellence in Usability

•  Make ICT technologies

easier to use by
biomolecular researchers,
both in academia and
industry

•  Devise efficient workflow
environments with
associated data integration

4

DMI
Monitor

DMI Enactor

DMI
Executor

DMI Enactor

Data Delivery
Point

Data
Source

Monitoring flow

Data flow

Service Invocation

DMI
Optimiser

DMI
Planner

DMI
Validator

DMI
Gateway

DMI
Gateway

DMI
Gateway

DMI Enactor

Portal /
Workbench

DMI
Request

DADC
Engineer

DMI
Expert

Repository

Registry

DMI
Expert

Domain
Expert

bioexcel.eu	

Objectives of BioExcel

Competence-building among academia and industry
Promote best practices and train end users to make best use of both
software and computational infrastructure
•  academic and non-profit users
•  industrial users
•  independent software

vendors (ISVs) and
academic code providers
of related software

•  academic and commercial
resource providers

bioexcel.eu	

Interest Groups

•  Integrative Modeling
•  Free Energy Calculations
•  Best practices for performance tuning
•  Hybrid methods for biomolecular systems
•  Biomolecular simulations entry level users
•  Practical applications for industry

Support platforms
http://bioexcel.eu/contact

 Forums Code Repositories Chat channel Video Channel

bioexcel.eu	

The presenter

Mark	is	the	project	manager	for	GROMACS	and	one	of	the	lead	
developers	for	the	package.	He	received	his	PhD	from	
Australian	NaGonal	University	and	is	an	expert	on	disordered	
proteins,	simulaGon,	clustering,	replica	exchange	sampling,	
parallelizaGon,	and	large-scale	soMware	development.	He	
oversees	and	coordinates	the	worldwide	development	efforts	
of	GROMACS,	and	has	been	responsible	for	the	molecular	
simulaGon	applicaGon	work	in	the	CRESTA	FP7	project.	His	
current	interests	are	focused	on	making	efficient	use	of	
accelerators	with	mulG-level	heterogeneous	and	task-based	
parallelizaGon.	

Performance tuning and optimization of
GROMACS

May 11, 2016

Mark Abraham, GROMACS development manager

GROMACS

I Classical molecular dynamics
I Mostly targets problems from biochemistry
I Free and open-source C++11 community project
I Developed by multiple institutions
I Used by hundreds of research groups

Does GROMACS performance optimization matter?

I Quality of science often relates to number of independent
configurations sampled

I Default performance is pretty good
I Don’t bother when you are a beginner
I Don’t bother if you can go and do something else while it runs
I Do bother if you are running lots of the same kind of

simulation, particularly on the same kind of hardware
I Do bother if your resources cost more than your time

What do we need to consider?

I How was GROMACS built?
I What will we simulate?
I How will we simulate it?
I How does GROMACS work inside?
I What hardware will we use?
I How do we map the simulation to the hardware?
I How do we find out what might be improved?

Building GROMACS well

I Build the most recent version of GROMACS
I Consult the install guide

http://manual.gromacs.org/documentation/
I Use a recent (preferably latest) version of everything:

I compiler e.g. gcc 4.8+ or Intel 14+
I CUDA/OpenCL SDK, GDK and drivers
I MPI libraries

I Configure FFTW appropriately (both ≠ ≠enable ≠ sse2 and
≠ ≠ enable ≠ avx), or use
cmake ≠DGMX_BUILD_OWN_FFTW=ON

I Build with MPI only to run on multi-node clusters
I Build a non-MPI version for single-node usage, including

running PME tuning, as well as pre- and post-processing
I Build in double precision only if you know why you need it

http://manual.gromacs.org/documentation/

Prepare your simulation well

I Choose a simulation cell that is the right shape, just large
enough for your science and your physical model

I Prepare topologies with gmx pdb2gmx ≠vsite hydrogen for 4
fs time steps (and use LINCS with all-bonds constraints)

I Otherwise, use LINCS and h-bonds constraints and 2 fs time
steps

I Be aware that typical water models are rigid
I Use 3-site water models unless there’s a clear scientific reason
I Orient your simulation box with load-balancing in mind

Choose your simulation setup well
I Write only the output you can use

http://www.gromacs.org/Documentation/How-tos/
Reducing_Trajectory_Storage_Volume

I Less overhead during simulation
I Faster post-processing and analysis
I Plan to use gmx mdrun ≠rerun

I Don’t use coupling algorithms every MD step
I Choose nst� parameters to have a large common factor, like 10

or 100
I VDW cuto�s are part of your force field, follow standard

practice
I Use default settings for long-range PME unless you can show

why you need it (but consider PME order 5 and a larger grid
spacing)

I Choose appropriate LINCS settings (see
http://manual.gromacs.org/documentation/5.1.2/user-guide/
mdp-options.html#bonds)

http://www.gromacs.org/Documentation/How-tos/Reducing_Trajectory_Storage_Volume
http://www.gromacs.org/Documentation/How-tos/Reducing_Trajectory_Storage_Volume
http://manual.gromacs.org/documentation/5.1.2/user-guide/mdp-options.html#bonds
http://manual.gromacs.org/documentation/5.1.2/user-guide/mdp-options.html#bonds

GROMACS single rank with no GPU

GROMACS multiple ranks, with no GPU

GROMACS multiple ranks, separate PME ranks, and no
GPU

GROMACS multiple ranks with GPUs

GROMACS multiple ranks, separate PME ranks, and with
GPUs

Get appropriate hardware

I GROMACS needs a well-balanced set of CPU and GPU
resources - read https://doi.org/10.1002/jcc.24030

I To scale across multiple GPUs, you want several tens of
thousands of particles per GPU

I Multi-node runs need at least gigabit ethernet, or preferably
Infiniband

I Memory and disk don’t matter
I Cloud resources can be fine, but avoid running inside virtual

machines
I Homogeneity is much better

https://doi.org/10.1002/jcc.24030

Running mdrun on a single CPU-only node

I Use the default build, which compiles with thread-MPI support,
not MPI

I mdrun defaults do a good job
I Consider varying ≠ntmpi M and ≠ntomp N so that M ◊ N

equals the total number of threads
I Hyperthreading on Intel CPUs useful only with thousands of

particles per core

On a node with 16 cores, you might try
gmx mdrun ≠ntmpi 16 ≠ntomp 1
gmx mdrun ≠ntmpi 8 ≠ntomp 2
gmx mdrun ≠ntmpi 4 ≠ntomp 4

More examples in GROMACS user guide

Running mdrun on a single GPU+CPU node
I Use the default build
I mdrun defaults do a good job of maximizing total resource

usage
I You need a number of domains that’s a multiple of the number

of GPUs
I Consider varying ≠ntmpi M and ≠ntomp N so that M ◊ N

equals the total number of threads, and M is a multiple of the
number of GPUs. You may need to set ≠gpu_id appropriately.

I Consider varying ≠ nstlist L over e.g. 40/50/60/70

On a nodes with 16 cores and two GPUs, you might try
gmx mdrun ≠ntmpi 8 ≠ntomp 2 ≠gpu_id 00001111
gmx mdrun ≠ntmpi 4 ≠ntomp 4 ≠gpu_id 0011
gmx mdrun ≠ntmpi 2 ≠ntomp 8 ≠gpu_id 01

More examples in GROMACS user guide

Running mdrun on multi-node clusters

I Build MPI-enabled GROMACS
I GROMACS uses the network heavily - latency and variability

normally limits performance and scaling
I Requesting nodes close in network space can help
I Consider tweaking MPI library settings to favour small

messages requiring minimal rendezvous and bu�er copy
overhead

I Using separate PME MPI ranks with ≠npme P is essential
once you run on more than a handful of nodes

I gmx tune_pme is very useful for this
I Now two domain decompositions and multiple communication

phases are involved
I Best when the two groups of {PP, PME} MPI ranks have sizes

that are composite numbers with lots of common factors, e.g.
{48,16} > {40,24} >> {42,22}

Running mdrun on CPU-only multi-node clusters

I Similar to single-node case, but you have to use
mpirun gmx_mpi mdrun, and ≠npme now matters

I Often need to ask the job scheduler for resources and settings
that match how you run mdrun

I Read the documentation for your cluster

On 4 nodes, each with 16 cores, you might try
mpirun ≠np 64 gmx_mpi mdrun ≠ntomp 1 ≠npme 16
mpirun ≠np 32 gmx_mpi mdrun ≠ntomp 2 ≠npme 8
mpirun ≠np 16 gmx_mpi mdrun ≠ntomp 4 ≠npme 4

More examples in GROMACS user guide

Running mdrun on GPU multi-node clusters

Similar to all the foregoing, but more complex :-(

On 4 nodes, each with 16 cores and 2 GPUs, you might try
mpirun ≠np 64 gmx_mpi mdrun ≠ntomp 1

≠npme 16 ≠gpu_id 000000111111
mpirun ≠np 32 gmx_mpi mdrun ≠ntomp 2

≠npme 8 ≠gpu_id 000111
mpirun ≠np 16 gmx_mpi mdrun ≠ntomp 4

≠npme 4 ≠gpu_id 001
mpirun ≠np 24 gmx_mpi mdrun ≠ntomp 3

≠npme 8 ≠ntomp_pme 2 ≠gpu_id 0011

In the last case, each node has 4 PP ranks with 3 threads each, and
2 PME ranks with 2 threads each, total 16.

More examples in GROMACS user guide

PME tuning

I Given a number of domains (= MPI ranks), mdrun will choose
whether to turn on PME tuning

I shifts workload between PP and PME ranks at constant
accuracy

I picks whatever runs fastest and uses it for the rest of that run
I can be turned o� with ≠notunepme
I can interact poorly with dynamic PP load balancing, try

≠dlb no
I The number and type of MPI ranks was chosen before mdrun

started, which limits its options
I gmx tune_pme can run

mpirun ≠np N gmx_mpi mdrun ≠npme P for fixed N and a
range of P, adjusting your .tpr over a range of PME settings

I Need both MPI and non-MPI builds available
I Can work with GPUs, but there’s only a small number of

per-node layouts that could be reasonable

Strong scaling vs throughput

If you anyway
I need many copies of similar simulations, and
I can wait longer to get the full set of results, and
I have finite resources

. . . then for four simulations, each with four ranks, consider using
mpirun ≠np 16 gmx_mpi mdrun ≠m u l t i d i r A/ B/ C/ D/

Multi-simulations and GPUs

I Multi-simulation is particularly e�cient with GPUs
I GPUs are used only during short-ranged forces, and lie idle

during calculations of constraints, virtual sites, coordinate
update, and communication

I However PP ranks from two simulations per GPU can run
mutually out of phase and keep the GPUs busy!

Then for four simulations, each with four ranks, on a single node
with two GPUs, consider using
mpirun ≠np 16 gmx_mpi mdrun ≠m u l t i d i r A/ B/ C/ D/

≠gpu_id 0101010101010101
mpirun ≠np 16 gmx_mpi mdrun ≠m u l t i d i r A/ B/ C/ D/

≠gpu_id 0000000011111111

Measuring performance

I Use the actual production .tpr you intend to use
I Run a few thousand MD steps to permit tuning and load

balancing to stabilise
I Then reset the counters to observe performance

For example
gmx mdrun ≠n s t e p s 6000 ≠ r e s e t s t e p 5000

Reading the log file

I Summary of hardware and software configuration at the start
I Reports on how the simulation has been set up just before it

starts
I Analysis of walltime at the end
I Use side-by-side di� to compare di�erent runs to understand

where they were di�ferent and what e�ect that had

bioexcel.eu	

Audience Q&A session
Please use the Questions function in GoToWebinar

bioexcel.eu	

www.bioexcel.eu/contact	

NEXT	WEBINAR	
	
“Atomis(c	Molecular	Dynamics	Setup	with	
MDWeb”	
with	Adam	Hospital	
	
25	May	2016	
16:00-17:00	CEST	

